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Design of Pool Mixes Against Profiling Attacks in
Real Conditions
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Abstract—Current implementations of high-latency anony-
mous communication systems are based on pool mixes. These
tools act as routers that apply a random delay to the messages
traversing them, making it hard for an eavesdropper to guess the
correspondences between incoming and outgoing messages. This
hides the identities of communicating partners in the network,
but it does not prevent an adversary continuously monitoring
the network from unveiling the communication profiles of the
users. In this work, we tackle the problem of designing the delay
characteristic of pool mixes so as to maximize the protection of
the users against profiling attacks. First, we propose a theoretical
model for users’ sending behavior which we validate using three
real datasets of different nature. Then, we use this model to
perform a privacy analysis of the system and obtain the delay
function of the mix which is optimal in the sense of protecting the
users. Since computing the delay characteristic of this optimal
pool mix requires information about the users’ behavior, we also
propose a user-independent but less effective mix design. We
evaluate these pool mixes, comparing them with one of the most
studied existing designs, the binomial pool mix. Our experiments
show that an adversary against our optimal design may need up
to 30 times as long to achieve the same level of disclosure as for
a binomial pool mix.

Index Terms—anonymity, optimization, pool mixes

I. INTRODUCTION

The introduction of mixes by Chaum back in 1981 [1]
paved the way to the development of high-latency anonymous
communication systems [2], [3], [4]. Mixes can be seen as
communication channels that provide unlinkability between
the messages they receive and the messages they output. This,
in turn, prevents an external observer from inferring who
communicates with whom. Mixes provide unlinkability by
performing two basic operations: changing the appearance of
the messages to avoid bit-wise correlations, which can be done
through encryption, and breaking the timing information of the
messages to avoid time correlations, which is done by delaying
and reordering the messages.
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One widely studied type of the mix is the so-called pool
mix [3], [5], [6], [7]. This mix stores the messages it receives
in a pool and applies a random delay to each before forwarding
them to their corresponding recipients. This randomness in the
delay makes it hard to infer for an external eavesdropper, such
as the ISP provider, who is the sender of a given message
leaving the mix. However, when the communications take
place over a sufficiently long period of time, it is known that an
adversary observing the flow of messages traversing the mix
can learn information about the communication preferences of
the users by means of a disclosure attack [8], [9], [10], [11],
[12].

One key factor that determines the degree of protection
provided by the pool mix is the so-called delay characteristic
of the mix, i.e., the function from which the random delays of
the messages are drawn. Previous works show that, for a given
distribution on the message delay (e.g., geometric distribution),
higher average delays provide better protection to the users [7],
[11], [13]. However, two delay distributions that produce the
same average delay may yield different protection properties.
It is thus important to understand how the messages inside the
pool should be delayed so as to maximize the anonymity of
the users. The search for the optimal delay characteristic of
the pool mix has been previously carried out in [7], [13] from
an information-theoretic point of view and assuming that the
user traffic follows statistical models that are far from being
realistic.

In this work we adopt an estimation-theoretic approach to
the analysis of pool mixes, studying how to optimize their
the delay characteristic so as to maximize the privacy of the
users. This complements the information-theoretical approach
of [7], [13] and allows us to obtain results in complex and
realistic scenarios. We are interested in understanding how to
protect the users against profiling attacks, i.e., attacks that aim
at revealing the long-term communication profiles of the users
rather than finding the sender and recipient of a particular
message. Our work shows that the optimal design of the
delay characteristic actually depends on how users behave
in the system, and therefore a user-independent solution is
not optimal. We start by presenting a novel theoretical study
of mix-based systems that help us to better understand how
the behavior of the users affects their privacy. Based on
this model, we obtain the delay function that maximizes our
anonymity metric, namely the adversary’s mean square error.
This optimal pool mix design allows users communicating for
almost three years with a global adversary eavesdropping the
communications to achieve the same level of protection as
users communicating for one month through a binomial pool
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mix [6], one of the state-of-the-art designs. This highlights
the importance of optimizing the delay characteristic in pool
mixes. We validate our findings with real data, and discuss
why previous theoretical analyses are not suitable in practice.
The approach we follow in the paper can be summarized in
the following steps:

1) We find a theoretical model for the behavior of the users
that suits real behavior.

2) We derive a formula that predicts the performance of the
system in real scenarios.

3) We study which delay characteristic optimizes this for-
mula from the defender’s point of view.

4) We evaluate the designs obtained with real data and
compare with the literature.

The rest of the document is structured as follows. In the
next section, we introduce the system model and notation used
throughout the paper, explain how we measure the privacy of
the users and describe the real data we use to evaluate our
findings. We propose a theoretical model for user behavior
in Section III, which we then use to obtain a mathematical
expression that models the degree of protection of the users
in the system. With this expression, we solve in Section IV
the problem of building an optimal delay characteristic for the
pool mix and propose quasi-optimal and sub-optimal variants
of this design. We evaluate our solutions and compare them
with the binomial pool mix in Section V, and discuss the
differences between our estimation-theory approach and the
information-theory approach taken in previous analysis in
Section VI. We conclude in Section VII.

II. PRELIMINARIES

In this section, we introduce our system and adversary
model, together with an explanation of the notation used in the
paper. We then explain how we measure privacy and describe
the data we use to validate the models and results proposed
throughout this work.

A. System Model and Notation

Our system consists of N senders that communicate with
M receivers through a mix-based anonymous communication
system implementing a pool. The system operates in batches
that we call communication rounds. The operation of the mix
in each of these rounds is described by the following batching
strategy:

1) The mix gathers messages from the senders, assigns to
each of them a waiting time (in rounds) chosen according
to a delay characteristic, and stores them in its pool.

2) When a certain flushing condition triggers (e.g., a timer
expires), the mix selects from the pool the messages
whose waiting time has expired, changes their appearance
using encryption techniques, and forwards them to their
corresponding recipients.

3) The mix decreases in one unit the waiting time of the
messages that remain in the pool. These messages will
be mixed with the ones arriving in subsequent rounds.

Our adversary is a passive eavesdropper that observes all
the messages being sent and received in the system during

ρ communication rounds. She cannot see the contents of
the messages entering and leaving the mix nor establish any
bit-wise linkability between them, but she is aware of all
the system parameters and knows how the system operates
(i.e., the batching strategy). The aim of the attacker is to
reconstruct the sending profiles of the users, denoted as
qi

.
= [p1,i, p2,i, · · · , pM,i]

T for each sender i, where pj,i
represents the probability that a given message sent by sender
i ∈ {1, · · · , N} is addressed to receiver j ∈ {1, · · · ,M}.
These profiles represent the intensity with which each sender
communicates with each receiver.

The notation we use throughout the paper is illustrated in
Fig. 1 and summarized in Table I. We use upper case characters
to denote random variables, and lower case characters to
denote their realizations. Vectors are denoted by upper-case
boldface characters when they contain random variables, and
by lower-case boldface characters when they are realizations
of random vectors or when they contain constant parameters.
Matrices are represented by upper-case boldface characters;
whether the values inside them are random variables or realiza-
tions will be clear from the context. Matrix AT is the transpose
of A (same for vectors), diag {a} is a diagonal matrix whose
main diagonal contains the elements of the vector a, and
Tr {A} is the trace of matrix A. Matrix IN×N is the N ×N
identity matrix, 0N×N and 1N×N are the N × N zero and
ones matrices and 1ρ is the ρ×1 vector of ones. The Euclidean
norm of vector a is denoted by ||a||, and the operator ◦ is the
entrywise or Hadamard product of matrices. Also, Â is the
adversary’s estimation of A (the same applies to vectors and
scalar values).

The random variable that models the number of messages
sender i sends in round r is denoted by Xr

i (then, xr
i is one

realization of this variable). The delay characteristic of the
mix is defined by the probability mass function of the delay,
measured in rounds. The probability that a message is delayed
k rounds inside the pool is denoted by dk (k ≥ 0). The random
variable that models the amount of messages from each sender
i that leave the pool in round r is Zr

i , and Y r
j,i models the

number of those messages that are addressed to receiver j
(note that Zr

i =
∑M

j=1 Y
r
j,i). The total number of messages

leaving the pool for receiver j in round r, from all senders, is
Y r
j

.
=

∑N
i=1 Y

r
j,i.

From these basic random variables, we now form the fol-
lowing vectors and matrices: the vector Xi

.
= [X1

i , · · · , X
ρ
i ]

T

contains the input process for user i, and the matrix X
.
=

[X1, · · · ,XN ] contains all the observed inputs. Matrix Z is
defined in the same way for the number of messages from each
sender that leave the pool in each round, i.e., Zr

i . Likewise,
for the outputs we define vector Yj

.
= [Y 1

j , · · · , Y
ρ
j ]

T and
matrix Y

.
= [Y1, · · · ,YM ]. We group the values that form

the delay characteristic, dk, in vector d .
= [d0, · · · , dρ−1]

T . We
also define the convolution matrix D, which is a ρ× ρ matrix
whose r, s-th element is dr−s if r ≥ s and 0 otherwise. This
matrix is depicted in (2) and will come in handy later. With the
probabilities pj,i we define the vector that represents the re-
ceiver profile for each receiver j, i.e., pj

.
= [pj,1, · · · , pj,N ]T ,

and the matrix containing all probabilities P
.
= [p1, · · · ,pM ]

(the sending profile qi defined before is the i-th row of this
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TABLE I: Summary of notation

Symbol Meaning
N Number of senders, denoted by i ∈ {1, · · · , N}.
M Number of receivers, denoted by j ∈ {1, · · · ,M}.
ρ Number of rounds observed by the adversary, r ∈ {1, · · · , ρ}.
pj,i Probability that sender i sends a message to receiver j.
Xr

i Number of messages sent by sender i in round r.
Zr
i Number of messages sent by i leaving the pool in round r.

Y r
j,i Number of messages from i leaving for j in round r.

Y r
j Number of messages from all users leaving for j in round r.

dk Probability that a message is delayed k rounds in the pool.

qi Sending profile of user i, qi
.
= [p1,i, p2,i, · · · , pM,i]

T .
pj Vector of probabilities per receiver, pj

.
= [pj,1, · · · , pj,N ]T .

P Matrix of all probabilities, P .
= [p1, · · · ,pM ].

Xi Input process for sender i, Xi
.
= [X1

i , · · · , X
ρ
i ]

T .
X Matrix with all the inputs, X .

= [X1, · · · ,XN ].
Z ρ×N matrix containing Zr

d in its (r, i)-th entry.
Yj Output process for receiver j, Yj

.
= [Y 1

j , · · · , Y ρ
j ]T .

Y Matrix with all the outputs, Y .
= [Y1, · · · ,YM ].

d Delay characteristic of the mix, d .
= [d0, · · · , dρ−1]T .

D Convolution matrix of the delay characteristic, shown in (2).

E Estimation error of the adversary, E .
= P̂−P.

Ce Covariance matrix of the estimation error, Ce
.
= E

{
EET

}
.

µ(i) Avg. No of mes. sent by user i per round, µ(i) ≡ E
{
Xr

i

}
.

M Diagonal matrix M
.
= diag {[µ(1), · · · , µ(N)]}.

ξi Average estimation error on i’s sending profile.
ξT Total average estimation error of the LSDA attacker.

xr
1

xr
2

xr
N

yr
1

yr
2

yr
M

Senders Receivers

fd(k)

Select recipientPool
Flushing
condition

yr
1,2

yr
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Mix

zr
1
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2
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Fig. 1: System model during the communication round r.
A global passive adversary is only able to see the mes-
sages arriving and leaving the mix (i.e., xr

1, x
r
2, · · · , xr

N and
yr1, y

r
2, · · · , yrM ) but is not aware of what happens inside of it.

matrix).

B. Privacy Metrics

We measure the privacy of the users in our system as
the attacker’s estimation error. As we have mentioned in the
introduction, we are interested in profiling attacks, i.e., attacks
that aim at estimating the average sending behavior of the
users in the long term, represented by the sending profiles qi,
rather than attacks that aim at de-anonymizing each particular
message. The suitability of the estimation error as a privacy
metric is thoroughly discussed in [14], but the intuition is
simple: a larger estimation error means that the adversary’s
estimation of the sending profiles q̂i is further from the real
ones qi, and therefore users enjoy a better protection. The
long-term disclosure attacks proposed in the literature that are
applicable to the general scenario we have presented are the
attacks belonging to the so-called Statistical Disclosure Attack

(SDA) family [10], [11], [15], [16], the Perfect Matching
Disclosure Attack (PMDA) [9] and the Bayesian inference
attack (Vida) [8]. We do not consider other attacks such as the
Disclosure Attack [17] or the Hitting Set Disclosure Attack
[18], since they estimate the exact set of contacts of each
sender instead of the intensity of the communications of such
sender with each of those contacts. We also leave the Two-
Sided SDA [19] out of our study, since it is only applicable
under some assumptions on how users reply to messages.

The SDA family is a set of efficient profiling attacks that
work by solving a linear problem that is built using the ob-
servations. PMDA and Vida work by finding matchings in the
system, i.e., studying the possible correspondences between
all messages entering and leaving the mix. PMDA is based on
looking for the most probable matching, while Vida iterates by
sampling matchings given the observations. In this sense, these
two attacks follow a message-based approach, which they then
use to estimate the sending profiles. From all these attacks,
only some members of the SDA family have been applied to
pool mixes. In principle, we could think of extending PMDA
and Vida to work in pool mixes. However, finding matchings
in a pool mix requires processing the whole trace at once,
since the pool introduces dependencies between rounds. This
renders PMDA and Vida computationally prohibitive against
pool mixes. We therefore limit our choice to the attacks of the
SDA family. From this family, the Least Squares Disclosure
Attack (LSDA) has been proven to outperform all its relatives
[15], so we use the performance of LSDA as our metric
for anonymity. We note that, even though it outperforms any
known feasible attack, LSDA is not necessarily the optimal
attack against pool mixes and better non-linear attacks may
appear in the future. Nevertheless, this is the first work to
study the optimal delay characteristic of the pool mix against
profiling attacks and, hence, our results shall serve as baseline
for future proposals.

1) Description of LSDA: The Least Squares Disclosure
Attack [16], [20] takes the count of messages that arrive to the
mix from each sender and that leave the mix to each receiver in
each round, and employs a least-squares algorithm to estimate
the sending profiles qi of each user i. The LSDA algorithm for
the pool mix can be explained in two steps. First, the attacker
estimates the number of messages from each sender that leave
the pool in each round given the input messages she observes
(i.e., xi) and the delay characteristic (i.e., d), following the
equation

ẑri
.
= E {Zr

i |Xi = xi} =

r∑
k=1

xk
i · dr−k . (1)

Here, we are assuming that, by the time the adversary starts
observing the system, there are no messages in the pool.
This assumption is reasonable, since the effect of the initial
number of messages in the pool decreases rapidly as the
attacker observes more communication rounds [16]. Using the
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convolution matrix

D
.
=


d0 0 0 · · · 0
d1 d0 0 · · · 0
d2 d1 d0 · · · 0
...

...
...

. . .
...

dρ−1 dρ−2 dρ−3 · · · d0

 , (2)

the operation in (1) can be written in matricial form as Ẑ =
DX. With this estimation of Z, the sending probabilities can
be inferred by solving

P̂ = (ẐT Ẑ)−1ẐTY . (3)

2) Performance of LSDA: We measure the performance of
LSDA as the Mean Squared Error (MSE) of the estimator. We
define the average estimation error per sending profile as

ξi
.
= E

{
||q̂i − qi||2

}
. (4)

This quantity represents how far the adversary’s estimation of
the sending profile is from the real profile, on average. The
further the adversary is from the real user profile, the more
privacy the user enjoys.

We also define a global measure of the privacy of the
system by combining the individual errors ξi. In order to
produce a fair combination of the individual MSE’s, we
first note that the product ρ · µ(i) · p̂j,i, where µ(i) is the
average number of messages sent by user i per round, can
be seen as an estimation of the number of messages user i
sends to j during the ρ observed rounds. The MSE of this
estimation can then be written as ρ2µ(i)2E

{
(p̂j,i − pj,i)

2
}

.
Now, adding along i and j we obtain the total MSE of the
estimated number of messages each sender sends to each
receiver. Normalizing this quantity to make it comparable to
(4), and using ξi =

∑M
j=1 E

{
(p̂j,i − pj,i)

2
}

, we obtain the
total average estimation error:

ξT
.
=

N∑
i=1

µ(i)2∑N
k=1 µ(k)

2
· ξi . (5)

This parameter is an global metric of the level of protection
of all the users against the LSDA attacker. We will use this
metric to assess the performance of a pool mix with a given
delay characteristic.

This metric can be expressed in a more convenient way by
using the error matrix E

.
= P̂−P. We build the MSE matrix

Ce
.
= E

{
EET

}
and use the fact that the diagonal entries of

this matrix correspond to ξi for i = 1, · · · , N to rewrite (5)
as

ξT
.
= Tr {MCeM} /Tr

{
M2

}
, (6)

where M
.
= diag {[µ(1), · · · , µ(N)]}.

C. Real Datasets

In this work, we use real datasets to validate our theoretical
study of pool mixes and to assess empirically the performance
of the pool mix designs. Each dataset consists of a collection of
messages exchanged in a communications system, from which
we know the sending time, the sender, and the recipient. In

order to work with them, we perform the following prepro-
cessing steps:

1) We select the flushing condition of our mix, i.e., the
condition that triggers the end of a round, from the two
we contemplate. We consider threshold pool mixes, in
which the end of the round is determined by the arrival
of t messages to the system, and timed pool mixes, that
wait τ units of time before triggering the end of the round.
We choose values of t and τ that provide a reasonable
anonymity/delay trade-off [21]: we pick t = 100 in the
threshold pool mix in all datasets, and a value of τ in
the timed pool mix that ensures that approximately 100
messages are mixed each round, but also guaranteeing
that a round does not last more than 24 hours.

2) We fit our user behavioral model to the information in
the datasets. The full list of parameters we use to model
the sending behavior of the users and how we compute
them from the datasets is explained in Section III-A.

3) We simulate the mixing process as explained in Sec-
tion II-A, generating the observations that would be
available to the adversary: X and Y.

The three datasets we use, along with the values of time τ
we use for the timed mix in each case, are the following:

• Email: this dataset contains about 220 000 emails sent
by the employees of the Enron company.1 We treat each
of the 294 email addresses sending emails as the senders
of our system, and consider that messages with multiple
recipients are different messages sent simultaneously to
each recipient. The aim of the anonymous communication
system is to hide who sends emails to whom. We use a
value of τ = 12 hours for the timed mix in this dataset.

• Location: this dataset is a collection of around 400 000
location check-ins which were carried out by the 500
most active users of the Gowalla social network.2 Each
check-in can be seen as a message sent by the sender to
the location the user is checking-in, and the aim of the
anonymous communication system is to hide who checks-
in where. The timed mix operates with τ = 1 hour.

• MailingList: this dataset contains almost 180 000 posts
to the public mailing lists of Indymedia3 made by the
500 most active posters. The anonymous communication
system is used to hide which user posts to which thread.
We use τ = 24 hours.

By combining the 3 real datasets and the 2 types of flushing
conditions, we get 6 sets of observations, which we use in
Sects. III and V.

III. THEORETICAL STUDY OF POOL MIX-BASED SYSTEMS

In this section we set the theoretical grounds that we later
use to improve the design of the pool mix. We start by
proposing a behavioral model for the users of the mix, and
then use this model to develop a formula that establishes a
relation between the delay characteristic of the mix, along with

1http://www.cs.cmu.edu/∼./enron/
2http://snap.stanford.edu/data/loc-gowalla.html
3http://lists.indymedia.org/

http://www.cs.cmu.edu/~./enron/
http://snap.stanford.edu/data/loc-gowalla.html
http://lists.indymedia.org/
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the statistics of the input and output processes, and the privacy
of the system.

A. Behavioral Model

We aim at proposing a statistical model that characterizes
real user behavior with respect to

(a) How and when users send messages, which is determined
by the random process that models the number of input
messages sent by each user i in each round r, i.e., {Xr

i }.
(b) How senders choose the recipients of their messages,

which is characterized by the random process that models
the number of messages at each output j in round r given
all the inputs, i.e., {Y r

j |X}.

1) Input process: For the first of these problems, we assume
that the input processes {Xr

i } for i = 1, . . . , N are stationary
and ergodic, i.e., their statistical moments do not change with
the rounds r, and we can compute these moments from a suffi-
ciently large realization of the process. We do not assume that
the input processes follow any specific probability distribution,
which allows us to obtain distribution-independent results. We
assume stationarity and ergodicity in order to be able to carry
out our theoretical analysis afterwards. Nevertheless, as we
will see in the next section, it is enough to assume that these
properties hold up to fourth order moments since these are the
moments we handle. We note that, although these assumptions
limit the applicability of our results, we are able to obtain
accurate results for the real data we use in this paper and,
hence, we consider these assumptions reasonable for a range
of realistic scenarios as the ones we study.

2) Output process given the inputs: The problem with
{Y r

j |X} is different, as we need to have expressions for
E
{
Y r
j |X

}
and Cov

{
Y r
j , Y

s
j |X

}
relating the inputs and the

outputs to perform the analysis. We therefore need a model
that assigns the input messages to the outputs.

We propose a model that considers that the messages sent
by the users in each round belong to one of two types
of conversations: sporadic conversations and dedicated ones.
The messages that belong to sporadic conversations are sent
to a recipient chosen independently for each message. The
messages that belong to a dedicated conversation are all sent to
the same recipient, and this recipient may be the same across
several rounds. With this model, we accommodate different
sending behaviors that were considered in the literature. The
independent choice of recipient, which is an appropriate model
in those communication scenarios where users contact multiple
receivers at once or just hold sporadic communications with
different users (e.g., Email dataset), has been assumed in most
of the previous works [8], [9], [11], [15], [16], [20]. On the
other hand, the model that considers dedicated conversations,
more appropriate in systems where users hold long conversa-
tions with a single receiver before switching to another one
(e.g., Location and MailingList datasets), was only used in
[21], although the authors of that work did not consider that
users focused on a certain recipient are more likely to keep
sending messages to that same recipient in consecutive rounds.
We now describe into detail how our model works.

previous
receiver

each

all

Fig. 2: Representation of how the receivers are assigned to the
messages sent by user i in round r in the proposed behavioral
model.

Model description: there are three parameters that model
the sending behavior of each user i: the sending profile qi,
which was defined before, the focus γi and the persistence ϵi.
Each round r, the number of messages each user i sends, xr

i ,
is assigned independently to the dedicated conversation group
xr
i,DE with probability γi, and to the sporadic conversation

group xr
i,SP otherwise. Then, all the messages in xr

i,DE are
assigned a single recipient: this recipient is the same as the one
chosen for the messages in the previous round (i.e., xr−1

i,DE)
with probability ϵi, and a new one following qi otherwise.
The recipient of each of the messages in xr

i,SP is chosen
independently and according to the sending profile qi. This
model is depicted in Fig. 2. Table II summarizes the new
notation introduced in this section.

The rationale behind this model is the following. The focus
γi is a probability that allows us to model users that tend to
focus in a single receiver per round (γi close to 1), or users that
are more likely to send sporadic messages to different contacts
(γi close to 0). Intermediate values allow us to model hybrid
users. The persistence ϵi allows us to model how likely the user
is to focus on the same receiver during consecutive rounds.
This value will be closer to 1, for example, for users that
tend to keep long conversations with others, while it will be
close to 0 for users that keep short but dedicated conversations
with their recipients. This model does not account for inter-
relations between users, i.e., the fact that a user choosing a
certain receiver affects the choice of other users’ receivers
(as opposed to users choosing their recipients independently
of each other). Including this feature in the system would
require many additional parameters (N2), which has two
disadvantages: it would substantially increase the difficulty of
the privacy analysis, and obtaining these parameters given the
observations would likely cause overfitting problems.

We note that, although the model does not capture scenarios
where users send messages to a group of receivers (e.g.,
broadcast messages or dedicated conversations with multiple
receivers), we obtain accurate results in presence of such traffic
(e.g., results on the Email dataset [21]). We conjecture that
these results are due to the effect of the pool, that delays
messages independently and therefore group messages can be
treated as sporadic messages in our analysis. In presence of
more complex user sending behavior, the model should be
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modified by the system designer and validated following the
methodology explained below.

Fitting the model to real data: We now explain how
we compute the values of the parameters of our model (i.e.,
qi, γi and ϵi for all i ∈ {1, · · · , N}) for each dataset
and flushing condition of the mix described in Section II-C.
The sending profile qi, defined in Section II-A, contains the
probabilities pj,i that sender i sends a message to each receiver
j ∈ {1, · · · ,M}. We compute these probabilities by counting
the total number of messages user i sends to j and dividing
between the total number of messages sent by user i.

Regarding the choice of γi and ϵi, we pick them so as to
accurately fit the variance (and covariance) of the outputs given
the inputs. First, we take into account the type of mix used
and generate samples from the number of messages sent by
sender i in each round r: xr

i . Then, we store the number of
messages from xr

i that go to each receiver j in ỹrj,i (note that
this process is different from yrj,i because it does not take the
delaying in the pool into account). Let σ̄l

i be the total sample
output covariance with l rounds of difference, i.e.,

σ̄l
i
.
=

ρ−l∑
r=1

M∑
j=1

(ỹrj,i − xr
i · pj,i)(ỹr+l

j,i − xr+l
i · pj,i) . (7)

Likewise, let σl
i be the value of the output covariance given

by our model, i.e.,

σl
i
.
=

ρ−l∑
r=1

M∑
j=1

Cov
{
Ỹ r
j,i, Ỹ

r+l
j,i |Xr

i = xr
i , X

r+l
i = xr+l

i

}
.

(8)
This value is computed using

M∑
j=1

Var
{
Ỹ r
j,i|Xr

i

}
=

(
Xr

i +Xr
i (X

r
i − 1)γ2

i

)
vi , (9)

and
M∑
j=1

Cov
{
Ỹ r
j,i, Ỹ

r+l
j,i |Xr

i , X
r+l
i

}
= Xr

i X
r+l
i γ2

i ϵ
|l|
i vi , (10)

which are the theoretical expressions for the variance and
covariance of our model, derived from the formulas (26) and
(27) in the Appendix. Here, vi represents the uniformity of
the sending profile qi, and is defined as vi

.
= 1− ||qi||2. The

uniformity ranges from 0, when the profile contains one value
equal to 1 and all the other values are 0, to (N − 1)/N, when
it is uniform, i.e., pj,i = 1/M , ∀j. The first block of Table II
contains a summary of the parameters that affect the variance
of the outputs.

We compute γi for each sender i as the value that minimizes
the mean squared error between the total sample variance and
the variance of the model, i.e.,

γi = argmin
γi

(
σ̄0
i − σ0

i

)2
. (11)

Similarly, we obtain the values of ϵi as those that mini-
mize the error between the total sample covariance and the
covariance of the model, using the γi obtained in (11), and

TABLE II: Notation developed in Section III.

Symb. Meaning

vi Uniformity: vi
.
= 1− ||qi||2.

γi Focus: prob. of sending each message to the focused receiver.
ϵi Persistence: prob. of keeping the focused receiver between rounds.

xr
i,DE Mes. from xr

i assigned to the dedicated conv. group.
xr
i,SP Mes. from xr

i assigned to the sporadic conv. group.
σl
i Total output covariance for user i with l rounds of difference.

σ̄l
i Total sample output covariance for user i with l rounds of diff.

r1(i) Combination of vi and γi; r1(i)
.
= (1− vi) + γ2

i vi.
r2(i) Combination of vi and γi; r2(i)

.
= γ2

i vi.

considering only the covariance up to R rounds of difference,
i.e.,

ϵi = argmin
ϵi

R∑
l=1

(
σ̄l
i − σl

i

)2
. (12)

In this work, we set R = 20 because we have validated
empirically that considering more than 20 rounds of difference
does not provide extra accuracy in our analysis.

Validation of the model: Figure 3 shows how accurate this
model is: we plot the sample covariance Cov

{
Y r
j,i, Y

r+l
j,i |X

}
averaged over all senders i, receivers j, and rounds r, for
each of the real datasets and the different mixing scenarios
described in Section II-C, for different values of the dis-
tance between rounds l. We also plot the average variance
estimated given the inputs with the proposed model, as well
as the variance predicted with the models in [21]. Note
that, in the existing models in [21], it was assumed that
Cov

{
Y r
j,i, Y

r+l
j,i |X

}
= 0 for l ̸= 0, and therefore we can only

observe this value for l = 0 in the logarithmic plot. In all the
figures, the covariance decreases as we consider rounds that
are more separated. In Fig. 3d the covariance also oscillates.
This is because the activity of the users in Email dataset
presents a strong dependency on the time of the day (note
that in this case the duration of the round is τ = 12 hours, so
the periodicity in the figure makes sense). The results of this
figure confirm that, with the sending profile qi and only two
additional parameters per user (γi and ϵi), our model does not
only outperform the prediction of existing models for l = 0,
but it is also able to predict the real covariance accurately for
multiple values of l.

B. Privacy Analysis

We aim at assessing the privacy of the system based on the
behavioral model we have introduced. Our goal is to obtain
an expression for the MSE matrix Ce, since this can then be
used to compute the privacy metrics presented in Section II-B
(the average estimation errors per sending profile, ξi, are the
diagonal elements of Ce, and the total average estimation
error, ξT , can be computed performing (6)).

We start by showing that the LSDA estimator in (3) is
unbiased. In the Appendix A, equation (31), we show that
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Fig. 3: Average output covariance Cov
{
Y r
j,i, Y

r+l
j,i |X

}
for each of the datasets as a function of l, obtained with the real data

(•), predicted by the proposed model (×), and predicted by the existing models (◦). The covariance for values l ̸= 0 in the
existing models [21] is 0, and therefore it is only observable when l = 0.

E {Y|X} = Ẑ ·P, which allows us to write

E
{
P̂
}
= E

{
(ẐT Ẑ)−1ẐT E {Y|X}

}
= E

{
(ẐT Ẑ)−1ẐT Ẑ ·P

}
= P . (13)

Therefore, using the law of total covariance we can write
Ce as

Ce
.
= E

{
EET

}
= E

{
(P̂−P)(P̂−P)T

}
= E

{
(ẐT Ẑ)−1ẐTΣY|XẐ(ẐT Ẑ)−1

}
, (14)

where ΣY|X is a ρ × ρ matrix whose (r, s)-th entry is∑M
j=1 Cov

{
Y r
j , Y

s
j |X

}
. We now simplify the computation of

Ce by considering that the adversary observes the system for
a sufficiently large amount of rounds. We note that matrices
ẐT Ẑ/ρ and ẐTΣY|XẐ/ρ contain sample averages of up
to fourth order moments of the input processes. Since we
are assuming that these processes are ergodic and that ρ
is sufficiently large, we can approximate those matrices by
their expected values. Although we could write these expected
values as an expression independent from ρ, in order to
reduce the notational complexity of our analysis we find
it convenient to define them as Rxx

.
= E{ẐT Ẑ}/ρ and

Rxyx
.
= E{ẐTΣY|XẐ}/ρ, and write

Ce ≈
1

ρ
R−1

xxRxyxR
−1
xx . (15)

Matrix Rxx depends only on the input process (X) and the
delay characteristic (given by D), and can be written as

Rxx =
1

ρ
E
{
XTDTDX

}
. (16)

Matrix Rxyx also depends on the relations between the inputs
and the outputs, represented by the covariance matrix ΣY|X.
A closed-form expression of this latter matrix can be found in
(32) in Appendix A. Plugging this formula into the definition
of Rxyx above allows us to write

Rxyx =
1

ρ
E
{
XTDT · diag {DX · 1N} ·DX

}
− 1

ρ
E
{
XTDTD · diag {X · r1} ·DTDX

}
+

1

ρ
E

{
XTDTD

[
N∑
i=1

(
XiX

T
i ◦Ei

)
r2(i)

]
DTDX}

}
.

(17)

For readability, we have grouped the effects of vi and γi in the
functions r1(i)

.
= (1− vi) + γ2

i vi and r2(i)
.
= γ2

i vi. We also
use r1

.
= [r1(1), · · · , r1(N)]T . For users that send messages

independently to their contacts (i.e., γi = 0), r1(i) = 1 − vi
and r2(i) = 0. In contrast, users that always focus on a certain
receiver (i.e., γi = 1) get r1(i) = 1 and r2(i) = vi. Note that if
γi = 0 for a certain user i, then r2(i) = 0 and the contribution
of that user to the last summand in (17) is zero. In that case,
we can compute Rxx and Rxyx with only the first, second
and third order moments of the input process of that user.
However, in most scenarios this will not be the case, and we
would also need the fourth order moments to compute the
last summand of (17). Note that, although we have assumed
strong stationarity and ergodicity, it is enough for our analysis
to assume stationarity and ergodicity up to order four, since
these are the largest order moments we handle.

We can compute our error metrics ξi and ξT to assess the
privacy of the users by plugging (16) and (17) into (15). The
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complexity of this formula is considerable, and simplifying it
yields much less accurate results. Fortunately, when our goal
is to solve the problem of finding the delay characteristic that
maximizes ξT , we can find an alternative objective function
relating ξT and D that is more amenable to analysis and yields
a solution close to the optimal one.

C. Evaluation

We evaluate the performance of our formula in a binomial
pool mix scenario [6]. The delay characteristic of this mix
follows a geometric distribution dk = α(1− α)k, where α is
the probability that a message stored in the pool leaves in each
round.

Figure 4 represents the overall error (6) predicted by our
formula, together with the real error of the attack. We also
plot the most accurate expressions found in the literature [21]
to model the adversary’s error in these datasets, which we have
adapted to pool mixes. We can see that our formula clearly
follows the trend of the real MSE as the delay characteristic
varies, while the ones in [21] are coincidentally accurate when
α = 1 (in this case, d0 = 1 and dk = 0 for k > 0, so it is
equivalent to having no pool), but are not valid to predict the
error for other pool mix designs (α < 1).

IV. OPTIMIZING THE DESIGN OF POOL MIXES

In this section, we address the problem of optimizing
the performance of the pool mix with respect to its delay
characteristic, i.e., finding the delay characteristic dopt that
maximizes our global privacy metric. We start by setting
an optimization problem whose solution is the optimal one,
although its complexity makes it hard to study. In order to shed
some light into how dopt depends on the users’ behavior, we
set an alternative optimization problem which is much more
amenable to analysis and whose solution is remarkably close
to the optimal one. Using this alternative formulation of the
problem, we study the optimal mix designs under different
assumptions on the users’ behavior, and come up with a user-
independent albeit sub-optimal design, that is useful when no
a priori information about the users is available.

A. Optimal Pool Mix Design

The optimal delay characteristic can be obtained by looking
for the vector d

.
= [d0, d1, · · · , dρ−1]

T that maximizes the
overall protection of the users in the system, defined in (6).
The problem is formally stated as

Optimal Pool Mix Design Problem:

dopt = argmax
d

Tr {MCeM}

subject to
ρ−1∑
k=0

dk = 1, dk ≥ 0, ∀k

ρ−1∑
k=1

k · dk ≤ δ̄

(18)

We have disregarded the normalization by Tr
{
M2

}
in (6),

since this normalization does not affect the maximum of the

function with respect to d. The first constraint ensures that
the delay characteristic obtained constitutes a valid probability
mass function, and the second one is a constraint on the
maximum average delay in rounds that the messages suffer
inside the pool, where δ̄ denotes this maximum average delay.
This formulation can also be accommodated to obtain the
optimal delay function given different constraints, for example,
a different bound on the maximum delay in rounds tolerated
for the messages (i.e., Lmax such that dk = 0 for k > Lmax).

Solving the problem in (18) is not straightforward: we need
to know the values of a huge amount of input moments (or
make assumptions on them) and all the parameters that model
the sending behavior of the users, namely qi, γi and ϵi for
i = 1, . . . , N . It is also very hard to get an intuitive idea of
how the shape of the optimal delay characteristic dopt relates
to these parameters. Motivated by this, in the next section we
look for an alternative formulation of this problem that is more
amenable to analysis.

B. Alternative Formulation of the Optimal Pool Mix Design:
Quasi-Optimal Pool Mix

In [22], we show that when the number of users in the
system N is comparable to ρ as ρ → ∞, the strategy followed
to maximize Tr {MCeM} and Tr

{
MR−1

xxM
}

is the same,
and therefore the delay characteristics that maximize each of
these functions are similar. In that case, (18) can be formulated
as

Quasi-optimal Pool Mix Design Problem:

d′
opt = argmax

d
Tr

{
MR−1

xxM
}

subject to
ρ−1∑
k=0

dk = 1, dk ≥ 0, ∀k

ρ−1∑
k=1

k · dk ≤ δ̄

(19)

Analyzing this problem is much easier than (18), as it
depends on less parameters: note that we only need to consider
up to second order moments of the input, and that the
dependence on vi, γi and ϵi is gone. These user parameters
still affect the MSE, but they do so via terms that become
independent of the delay characteristic when N → ∞ is
comparable to ρ. Interestingly, the solutions of (18) and (19)
are very close in our real datasets, as we empirically show in
Section V, which indicates that we are in the case of N being
comparable to ρ as ρ → ∞ in all the scenarios for which we
have data. We remark that for other scenarios where N ≪ ρ,
the system designer will have to rely on (18) to choose the
delay characteristic of the mix.

In order to provide more insight into the shape of the
optimal delay characteristic when N and ρ are not comparable,
we now study the solution of (19) under different assumptions,
when ρ → ∞ and N ≪ ρ. In order to do that, we first consider
that Rxx ≈ Σxx (c.f. [21]), where Σxx is the covariance
matrix of the input processes {X̂r

d,i}, i.e., if Xc
.
= X−1ρµ

T ,
then Σxx

.
= E

{
XT

c D
TDXc

}
/ρ. It will be helpful to define

additional notation: the variance of the input processes is
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Fig. 4: Overall MSE of LSDA in different realistic scenarios, as a function of the firing probability of the binomial pool mix
(α), compared with the theoretical MSE predicted by our formula and the existing ones [21].

denoted by µ2(i)
.
= Var {Xr

i }. With the variance of all users,
we build M2

.
= diag {[µ2(1), · · · , µ2(N)]}. We define the

autocorrelation of the delay characteristic of the mix at lag l
as Rdd[l]

.
=

∑ρ−1
r=l drdr−l for l ≥ 0, and Rdd[l] = Rdd[−l]

otherwise. Note that matrix DTD is ρ × ρ Toeplitz whose
r, s-th entry is Rdd[r − s]. Based on this, we can decompose
Σxx as

Σxx
.
=

1

ρ
E
{
XT

c D
TDXc

}
=

ρ−1∑
l=−ρ+1

C2[l] ·Rdd[l] , (20)

where C2[l] is an N × N matrix containing the covariances
between all the input processes with lag l, i.e., the m,n-th
entry of C2[l] is Cov

{
Xr

m, Xr+l
n

}
.

We start by assuming that the input processes are indepen-
dent white processes. We then analyze how auto-correlations
and cross-correlations in the input process affect the design
of the optimal delay characteristic, and provide some insights
into what shape this function takes when we cannot make any
assumptions on the input processes.

1) White input processes: We start by analyzing the simple
scenario where the input processes {Xr

i } are uncorrelated and
white. In that case, we have C2[l] = 0N×N for l ̸= 0 and
C2[0] = M2. By using the expansion in (20), we get that
Σxx = M2 · Rdd[0], and therefore the optimization problem
(19) becomes that of looking for the d that minimizes Rdd[0]
subject to the constraints.

This problem can be solved using the method of Lagrange
multipliers. Assume that L is the largest index such that dk =
0 when k > L. We use the fact that dk ≥ dk+1 (otherwise,
there would be another vector d that obtains the same value
of Rdd[0] for less average delay), and that dk ≥ 0 to find that
dk = λ1 − λ2 · k for k ∈ {0, · · · , L}, with λ1, λ2 > 0 and

dk = 0 for k > L. This means that the values of our solution
d′
opt are points of a straight line with negative slope. We then

use these equations together with the constraints to find that
the solution to this problem is the following:
a) Given an average delay in rounds δ̄, pick L = ⌈3δ̄⌉.
b) Then, set

dk =
2

L+ 1

(
L+ 1 + (L− 3δ̄)− k

L+ 2

)
(21)

for k = 0, · · · , L. All the other dk for k > L are set to 0.
We refer to the pool mix implementing this delay characteristic
as the ramp pool mix, due to the shape of the delay charac-
teristic obtained, which we denote by drmp. It is interesting
to note that, when the inputs are white, the optimal delay
function in the sense of maximizing the global MSE is user-
independent as it does not depend on the input moments or the
sending behavior of the users. Therefore, this design is very
useful when there is no a priori information about the users.

2) Linear model for auto-correlations: We now assume that
we can write the matrix X we observe as X = GX̃, where
X̃ is a matrix containing uncorrelated white processes (as in
the previous case) and G is a convolution matrix with the
same structure as D, containing in its first column the taps of
the FIR filter g

.
= [g0, g1 · · · , gρ−1]

T . This filter introduces
auto-correlations in the inputs processes of the users. It is
straightforward to show that, in that case,

Σxx =
1

ρ
E
{
X̃T

c G
TDTDGX̃c

}
= M2·(Rdd[l]∗Rgg[l])|l=0 ,

(22)
where ∗ denotes the convolution operation. Therefore, in this
case, the optimal delay characteristic is the one that, given the
constraints, minimizes (Rdd[l] ∗Rgg[l])|l=0. We can compare
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this with the previous scenario by looking at the frequency
domain. Let Λdd[k] and Λgg[k] be the coefficients of the ρ-
point DFT of dk and gk, respectively. Assuming that D and G
are circulant (the border effects can be disregarded as ρ grows),
the optimal delay function d is the one that minimizes

(Rdd[l] ∗Rgg[l])|l=0 ≈ 1

ρ

ρ−1∑
k=0

|Λdd[k]|2 · |Λgg[k]|2 . (23)

We could have solved the previous case (white inputs)
following this frequency analysis, obtaining that the optimal
delay characteristic in that case is the one that minimizes∑ρ−1

k=0 |Λdd[k]|2 given some delay and normalization con-
straints. Now, we have a specific Λgg[k] that depends on the
filter taps gk that “colors” the input processes. The spectrum
of the optimal delay characteristic |Λdd[k]|2 will take smaller
values in those frequency bins where |Λgg[k]|2 is larger, and
larger values in those bins where |Λgg[k]|2 is smaller. In that
sense, we can see the effect of g as an additional constraint
in the problem, that causes d to somehow “whiten” the input
processes, while satisfying the constraints of the problem.

In this example, we have assumed that the autocorrelation
of all the input processes is the same, given by the filter g.
If we have different autocorrelations per user (i.e., individual
filters g(i) for i = 1, · · · , N ), formulating the problem in the
same way we can see that the optimal solution consists on
designing a particular delay characteristic for each user, based
on the same idea above.

3) Linear model for cross-correlations: Similar to the
previous scenario, we now assume that there is an N × N
matrix S that generates our observation X by making linear
combinations of N uncorrelated white processes in X̃, i.e.,
X = X̃S. The processes in X are now white and correlated
processes. We assume that matrix S is non-singular, otherwise
LSDA could not be applied directly and we would have to
work in a subspace where the solution is possible. In that
case,

Σxx =
1

ρ
§T · E

{
X̃T

c D
TDX̃c

}
· § = §TM2§ ·Rdd[0] , (24)

and therefore the solution is again the ramp pool mix obtained
in (21).

4) Generic input processes: When the observed matrix X
cannot be written as a combination of the examples above,
i.e., X = GX̃S, then, besides Rdd[0], other autocorrelation
terms Rdd[k] can take part in the optimization problem. A toy
example for this is the case where we have N = 2 white users,
and user i = 2 always sends the same number of messages user
i = 1 has sent in the previous round, i.e., Xr

2 = Xr−1
1 . This

can represent, for example, a user that always replies to each
message she receives in the next round, or a repeater. In this
case, Σxx = I2×2·Rdd[0]·µ2(1)+(12×2−I2×2)·Rdd[1]·µ2(1),
and we obtain that the optimal delay function is the one that
minimizes Rdd[0] − Rdd[1] subject to the constraints. This
results in a bell-shaped delay characteristic, which is far from
the straight line we obtain for the cases 1 and 3 studied before.

For a generic input process, we cannot find a closed-form
solution for the delay characteristic. We can only expect to
find a delay function more similar to a straight line when the

input correlations are small, and a bell-shaped function when
the correlations between the processes are large, or even when
they are small but the number of users is large.

V. EVALUATION

In this section, we evaluate the performance of the different
delay characteristics proposed in the previous sections. We
build the following pool mixes, that differ on their delay
characteristic:

1) The optimal pool mix, whose delay characteristic is given
by the solution to (18), i.e., dopt.

2) The quasi-optimal pool mix, whose delay characteristic
is given by the solution to (19) when no assumptions on
the input processes are made, i.e., d′

opt.
3) The ramp pool mix, whose delay characteristic, given by

(21) and denoted by drmp, is the solution to (19) under
the assumptions that the input processes are white and
uncorrelated.

4) The binomial pool mix, which has been widely used in
the literature and claimed as the optimal pool mix in
terms of anonymity in previous works [7], [13]. The delay
characteristic of this pool is denoted by dbin and is given
by dk = α(1 − α)k, where α is a parameter between 0
and 1 controlling the delay of the messages inside the
pool.

Each of these designs is assigned a flushing condition and
evaluated with real data, as explained in Section II-C. All the
simulations are performed using Matlab software, including
the optimization tools to solve (18) and (19).

A. Shape of the delay characteristic
We first compare the shape of the delay characteristics of

the four pool mix designs, for different values of the average
delay in rounds δ̄. This is shown in Fig. 5. Since dopt and
d′
opt are different for each input dataset, we plot the average

result in the figure. The gray area represents the maximum and
minimum values obtained for each dk ∈ dopt in the datasets.

The figure confirms that the average shape of the delay
characteristic of the optimal and quasi-optimal designs is
very similar for all the values of average delay δ̄ we test,
which confirms our intuitions in Section IV-B. It is also worth
noticing that these delay functions are non-decreasing and
bell-shaped:this happens because the number of users N in
the real datasets we have used for evaluation is comparable to
the number of rounds observed ρ, as explained in [22].

We show in Table III the variance of the delay of each
design (we show the average variance over all datasets for the
optimal and quasi-optimal pool mixes). Again, the optimal
and quasi-optimal designs have very similar variance, as
their shape is almost the same. These pool mixes do not
only maximize the error but also have the smallest variance,
which means that, when using them, users can expect a delay
in rounds close to the average value δ̄ for each of their
messages, while for the other types of designs the delay is less
predictable. It is also worth noticing that the variance of the
ramp pool mix is half the variance of the binomial one, which
makes the ramp pool mix a more appealing option when no
information about the users is available to the system designer.
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Fig. 5: Comparison between the delay characteristic of different pool mix designs.

TABLE III: Expected variance of the delay (in number of
rounds) introduced by each type of pool for different values
of average delay.

δ̄ 1 2 3 4 5
Var{dbin} 2.00 6.00 12.00 20.00 30.00
Var{drmp} 1.00 3.00 6.00 10.00 15.00
Var{d′

opt} 0.91 2.31 4.08 6.05 8.20
Var{dopt} 0.90 2.23 3.92 5.79 7.84

B. Performance of the pool mix designs

We evaluate the protection that the different pool mix
designs offer against the LSDA adversary. Figure 6 shows
the global MSE (ξT ) obtained by using the different pool
mix designs for different values of average delay (we have
omitted the value at δ̄ = 0, as all the pools are equivalent in
that case, i.e., d0 = 1). We can see that the ramp pool mix
considerably improves the protection of the users in the system
when compared with the traditional binomial pool mix, but
the optimal and quasi-optimal designs achieve a substantially
better result. The difference between these latter is small,
although the optimal pool mix performs slightly better in
every case. For an average delay of δ̄ = 5 rounds, the ratios
between the MSE achieved by the optimal pool mix and the
MSE achieved by the binomial pool mix for each dataset in
Fig. 6 are, in order, 2.5, 4.4, 2.7, 2.4, 34.3 and 5.0. Since the
dependence of the MSE on the number of rounds observed
is 1/ρ, we can also interpret these numbers as ratios on the
number of rounds. For example, in MailingList dataset using
a timer with τ = 24h as flushing condition and allowing a
maximum average delay of δ̄ = 5 rounds (Fig. 6f, ratio of 5.0),
users exchanging messages during a month using a binomial
pool mix would get the same degree of protection against a
profiling adversary than users communicating for 5 months
with our optimal pool mix. If we use a threshold of t = 100 as
flushing condition instead, the optimal design allows users to
exchange messages for almost three years while having more
protection than users exchanging messages for a month with
a binomial pool mix. These results highlight the importance
of the delay strategy in the privacy of the system: choosing a
well-designed delay characteristic can make a huge difference
in the performance.

VI. COMPARISON WITH RELATED WORK

In this section, we compare our work with other attempts
at finding the optimal delay characteristic for a pool mix.
There are two works that have performed this analysis. On
the one hand, Danezis analyzes in [13] the delay characteristic
of a continuous pool mix [23], i.e., a pool mix that does not
operate in batches or rounds, but applies to each input process
Xi(t) a random delay which can be modeled by a continuous
probability density function d(t). However, the experiments
of this paper perform a time discretization, where the mix
works in so-called “simulation tics”. These simulation tics are
equivalent to our communication rounds, so we can consider
both scenarios equivalent and apply our analysis here. On the
other hand, Rebollo-Monedero et al. [7] study threshold pool
mixes that work by storing messages and forwarding k of them
to their recipients when the pool contains n ≥ k of them.
We have not considered this flushing condition in our cases
of study, as we are considering that the flushing condition is
independent of the current number of messages in the pool,
but our framework can easily accommodate it.

The approach to measure anonymity used by both
Danezis [13] and Rebollo-Monedero [7] is radically different
from ours. They use information-theoretic metrics, mainly
Shannon’s entropy, to measure the anonymity of single mes-
sages; while we use an estimation-theoretic approach to mea-
sure the error of the adversary when profiling a user. The
information-theoretic approach works as follows: for a target
output message, it builds a probability distribution describing
the likelihood that any input message corresponds with the
target output. Anonymity is then measured as the entropy of
this probability distribution: maximal entropy implies maxi-
mum anonymity since it represents the case where the output
message is equally likely to have come from each input; and
minimal entropy (zero) indicates minimum anonymity, i.e.,
that the output message can unequivocally be related to an
input.

Under this anonymity definition, and using Shannon’s result
that states that the distribution that maximizes the entropy
when there is a constraint on the average delay is the geo-
metric distribution (exponential for the continuous case), both
Danezis [13] and Rebollo-Monedero et al. [7] obtain that
the binomial pool mix (called exponential pool mix in the
continuous case [13]) is the optimal design, i.e., the one that
maximizes anonymity.
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Fig. 6: Performance of pool mixes in different realistic scenarios and using different flushing strategies (timed and threshold
mixes), as a function of the average delay (δ̄). Each line represents the overall MSE of LSDA (ξT ) using a different delay
characteristic.

In order to arrive to this conclusion both Danezis
and Rebollo-Monedero et al. make unrealistic assumptions.
Danezis assumes that the arrival of messages follows a Poisson
distribution, but it is known that in real scenarios this assump-
tion is not fulfilled (e.g., see [21]). Rebollo-Monedero con-
siders that the inter-arrival times have a common expectation
and variance and they are uncorrelated. In this paper we have
shown that not only these assumptions are not met by real
traffic, but also that the user auto- and cross-correlations have
great impact on the adversary’s error. In fact, the optimal delay
function under the Shannon’s entropy criterion depends on the
user behavior statistics, and it is in general different for each
user and/or population.

In order to show that under real traffic conditions the
optimality of the binomial mix claimed in [7], [13] does not
hold, we compare its performance to the ramp pool conducting
the following experiment described in [13]. We consider a
scenario in which there is only one sender that sends messages
to one of only two possible receivers. These receivers also
get messages from other users, from whom the adversary is
not able to see the inputs but knows the distribution of their
messages.

The attack proposed by Danezis is based on a hypothesis
test: either the observed input goes to the first receiver (H0)
or to the second (H1). In order to decide for one of the two,
Danezis computes a log-likelihood ratio logLH0/H1

. Given a
threshold η, the adversary decides H0 when logLH0/H1

> η.
The choice of the threshold η depends on the number of
simulation tics observed by the adversary and the desired
performance: a low η would increase the probability of deci-
ding H0 when H0 is true (i.e., increase the true positive rate,
TPR) but it would also increase the probability of incorrectly
deciding H0 when H1 holds (i.e., increase the false positive

rate, FPR).
We have implemented this attack and simulated the experi-

ment in Matlab.4 For each value of threshold η, we perform
10 000 repetitions of the experiment with 1 000 simulation
tics and compute the TPR and FPR for both the binomial
pool mix and ramp pool mix (21) configured for the same
average delay δ̄ = 30 rounds. We plot in Figure 7 the receiver
operating characteristic (ROC) curve, i.e., the TPR versus the
FPR obtained, for both designs. We see that the ramp pool
mix outperforms the binomial pool mix since, for any given
TPR, the ramp pool mix always achieves a larger FPR, i.e.,
the adversary will wrongly choose H0 when H1 holds more
often when the ramp pool is used.

The result of our experiments shows that, even though
the binomial pool mix maximized the information-theoretic
measure of sender anonymity introduced in [24], it is not op-
timal against the message tracing attack proposed in [13]. The
reason is that information-theoretic metrics only consider the
probability distribution of inputs for a given output message,
disregarding the distribution of all the other messages. Hence,
they do not reflect adequately how a given input blends with
other incoming traffic, which is key against attacks aiming at
tracing messages.

VII. CONCLUSIONS

In this work, we study the design of pool mixes, the basic
building blocks of high-latency anonymous communication
systems. We carry out such study from an estimation-theoretic
point of view, deriving a theoretical model for user behavior,

4For a detailed description of this experiment and the parameters used,
please see Section 3.2 in [13]. In order to compute the FPR, we have also
simulated the H1 scenario.
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fier in [13], given 1000 simulation tics, for the binomial pool
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which we validate with real data, and obtaining a mathema-
tical expression for the estimation error of the best profiling
adversary against pool mixes. We use this estimation error as
a metric of privacy, and obtain the delay characteristic of the
pool mix that maximizes this metric. Since computing this
optimal design requires a lot of information, we also propose
a quasi-optimal solution which is much easier to compute and
to understand, although its application is more limited. Our
work shows that the optimal pool mix design depends on the
users’ behavior, and therefore it is impossible to compute it
when no information about the users is available. In order to
solve this, we also propose the ramp pool mix, a sub-optimal
but user-independent design that is useful when the number
of rounds observed is much larger than the number of users
in the system.

We compare the performance of our proposals and the state-
of-the-art binomial pool mix against a profiling adversary,
and show that our constructions substantially increase the
protection provided to users. We further show that, contrary to
prior belief [7], [13], the binomial pool mix is neither optimal
against message-tracing attacks.

APPENDIX A
DERIVATION OF THE SECOND-ORDER MOMENTS OF THE

OUTPUT, GIVEN THE INPUTS

Our goal is to derive expressions for the expected value and
the second-order moments of the outputs Y r

j,i given the inputs
X. To make the derivations easier, in this section we use the
random variable Ỹ u

j,i, that models the number of messages
sent by sender i in round u, that are addressed to receiver
j (but can reach them in another round, since they may be
delayed inside the pool). Those messages enter the pool, and
leave in that round or in the subsequent ones. We define Y r,u

j,i

as the number of those messages leaving in round r. Note
that Y r

j,i =
∑r

u=1 Y
r,u
j,i . When there is no pool, we also have

Y r
j,i = Ỹ r

j,i. We also use vj,i
.
= pj,i(1 − pj,i) and note that

vi =
∑M

j=1 vj,i.
We start by building the relations between Ỹ u

j,i and the
inputs. These can be easily established by looking at Fig. 2.

E
{
Ỹ r
j,i|X

}
= E

{
E
{
Ỹ r
j,i|Xr

i,SP , X
r
i,DE

}
|Xr

i

}
= E

{
(Xr

i,SP +Xr
i,DE) · pj,i|Xr

i

}
= E {Xr

i · pj,i|Xr
i } = Xr

i · pj,i .

(25)

Since E
{
Ỹ r
j,i|Xr

i,SP , X
r
i,DE

}
= Xr

i ·pj,i, then the variance
of this expected value conditioned on Xr

i is zero. Therefore,

Var
{
Ỹ r
j,i|X

}
= E

{
Var

{
Ỹ r
j,i|Xr

i,SP , X
r
i,DE

}
|Xr

i

}
= E

{(
Xr

i,SP + (Xr
i,DE)

2
)
· vj,i|Xr

i

}
=

(
Xr

i (1− γi) + (Xr
i γi)

2 +Xr
i γi(1− γi)

)
vj,i

=
(
Xr

i +Xr
i (X

r
i − 1)γ2

i

)
vj,i .

(26)
Similarly, it can be shown that

Cov
{
Ỹ r
j,i, Ỹ

r+l
j,i |X

}
= E

{
Xr

i,DEX
r+l
i,DEϵ

|l|
i vj,i|Xr

i , X
r+l
i

}
= Xr

i X
r+l
i γ2

i ϵ
|l|
i vj,i .

(27)
Now, we show the relations between Y r

j,i and Ỹ in the
following equations, where we use that Y r,u

j,i |Ỹ and Y r+l,t
j,i |Ỹ

are uncorrelated for any l when u ̸= t:

E
{
Y r
j,i|Ỹ

}
=

r∑
u=1

E
{
Y r,u
j,i |Ỹ u

j,i

}
=

r∑
u=1

Ỹ u
j,i · dr−u . (28)

Var
{
Y r
j,i|Ỹ

}
=

r∑
u=1

r∑
t=1

Cov
{
Y r,u
j,i , Y r,t

j,i |Ỹ
}

=

r∑
u=1

Var
{
Y r,u
j,i |Ỹ

}
=

r∑
u=1

Ỹ u
j,i · dr−u(1− dr−u) .

(29)

Cov
{
Y r
j,i, Y

s
j,i|Ỹ

}
=

r∑
u=1

s∑
t=1

Cov
{
Y r,u
j,i , Y s,t

j,i |Ỹ
}

=

min(r,s)∑
u=1

Cov
{
Y r,u
j,i , Y s,u

j,i |Ỹ
}

= −
min(r,s)∑

u=1

Ỹ u
j,i · dr−uds−u .

(30)

We can now get the results we were looking for. Com-
bining equations (28) and (25), we get E

{
Y r
j,i|X

}
=∑r

u=1 X
u
i dr−upj,i or, in matricial form,

E {Y|X} = D ·X ·P = Ẑ ·P . (31)

Likewise, using the law of total variance together with the
equations above we can get closed-form expressions for
Var

{
Y r
j,i|X

}
and Cov

{
Y r
j,i, Y

s
j,i|X

}
. These expressions are

too long and we do not need them for the purpose of this
document, so we just note that, added along j, they can be
written in matricial form as

ΣY|X = diag {DX · 1N} −D · diag {X · r1} ·DT

+D ·

[
N∑
i=1

(
XiX

T
i ◦Ei

)
· r2(i)

]
·DT .

(32)
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The definition of r1 and r2(i) can be found after (17) in
Section III-B.
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